Innovation for Our Energy Future

Efficiency and Renewables on the Grid: Getting to Significance

Presented to Edison Electric Institute

September 6, 2007

Dr. Dan E. Arvizu

Director, National Renewable Energy Laboratory

Two Key Questions

- Are energy efficiency and renewable energy technologies poised to have a significant impact?
- Must policy measures include a correspondingly aggressive investment in technology innovation and cost reduction?

What Are the Major Renewables?

Electricity Net Generation – 2006

U.S. Renewable Energy Contributions

Percent of Total Electric Generating Capacity

We Are Now Setting Aspirational National Goals – Setting the Bar Higher

U.S. national goals

- Biofuels: reduce gasoline usage by 20% in ten years
- Wind: 20% of total provided energy by 2030
- Solar: Be market competitive by 2015 for PV and 2020 for CSP

Getting to "Significance" Involves...

Source: NREL

Are energy efficiency and renewable energy technologies poised to have a significant impact?

Past Investments Have Yielded Impressive Cost Reductions

Technology Options Are Evolving

Wind

Today's Status in U.S.

- 11,603 MW installed at end of 2006
- Cost 6-9¢/kWh at good wind sites*

DOE Cost Goals

- 3.6¢/kWh, onshore at low wind sites by 2012
- 7¢/kWh, offshore in shallow water by 2014

Long Term Potential

20% of the nation's electricity supply

NREL Research Thrusts

- Improved turbine performance and reliability
- Distributed wind technology
- Drivetrain reliability
- Utility grid integration

Wind Resources

Source: U.S. Department of Energy Wind Resource Atlas of the United States (1987)

Installed Wind Capacity

Wind Power Prices Are Up in 2006

Source: Berkeley Lab database.

Cumulative Capacity-Weighted Average Wind Power Price Over Time

Project Cost Increases Are a Function of Turbine Prices

Reported U.S. Wind-Turbine Transaction Prices Over Time

Integrating Wind Into Power Systems

New studies find integrating wind into power systems is manageable, but not costless

Date		Wind	Cost (\$/MWh)						
	Study	Capacity Penetration	Regulation	Load Following	Unit Commitment	Gas Supply	TOTAL		
2003	Xcel-UWIG	3.5%	0	0.41	1.44	na	1.85		
2003	We Energies	4%	1.12	0.09	0.69	na	1.90		
2003	We Energies	29%	1.02	0.15	1.75	na	2.92		
2004	Xcel-MND0C	15%	0.23	na	4.37	na	4.60		
2005	PacifiCorp	20%	0	1.6	3	na	4.60		
2006	CA RPS (multi-year)	4%	0.45*	trace	na	na	0.45		
2006	Xcel-PSCo	10%	0.2	na	2.26	1.26	3.72		
2006	Xcel-PSCo	15%	0.2	na	3.32	1.45	4.97		
2006	MN-MISO 20%	31%	na	na	na	na	4.41**		

3-year average ** highest over 3-year evaluation period

Key Results from Major Wind Integration Studies Completed 2003-2006

Some Additional Reserves May Need to be Committed

Reserve Category	Base		15% Wind		20% Wind		25% Wind	
	MW	%	MW	%	MW	%	MW	%
Regulating	137	0.65%	149	0.71%	153	0.73%	157	0.75%
Spinning	330	1.57%	330	1.57%	330	1.57%	330	1.57%
Non-Spin	330	1.57%	330	1.57%	330	1.57%	330	1.57%
Load Following	100	0.48%	110	0.52%	114	0.54%	124	0.59%
Operating Reserve Margin	152	0.73%	310	1.48%	408	1.94%	538	2.56%
Total Operating Reserves	1049	5.00%	1229	5.86%	1335	6.36%	1479	7.05%

Estimated Operating Reserve Requirement for MN BAs – 2020 Load

Source MN DOC

Solar

Photovoltaics and Concentrating Solar Power

Status in U.S.

PV

- 565 MW
- Cost 18-23¢/kWh

CSP

- 420 MW
- Cost 12¢/kWh

Potential:

PV

- 11-18¢/kWh by 2010
- 5-10 ¢/kWh by 2015

CSP

8.5¢/kWh by 2010 5-7¢/kWh by 2020

Source: U.S. Department of Energy, IEA, Solar Energy Technologies Program Multi-Year Plan 2007

PV

- Partnering with industry
- Higher efficiency devices
- New nanomaterials applications
- Advanced manufacturing techniques

CSP

- Next generation solar collectors
- High performance storage
 National Renewable Energy Laboratory

. ...:::iiiii

Updated July 2007

Alamosa PV Plant – Commercial Operation Testing

8 MW PV Plant - Phase 1 (3 MW)

Buildings

Status U.S. Buildings:

- 39% of primary energy
- 71% of electricity
- 38% of carbon emissions

DOE Goal:

- Cost effective, marketable zero energy buildings by 2025
- Value of energy savings exceeds cost of energy features on a cash flow basis

NREL Research Thrusts

- Whole building systems integration of efficiency and renewable features
- Computerized building energy optimization tools
- Building integrated PV

Neutral Cost Point Example Greensburg, Kansas

(2000 ft2, 2-story, 16% window to floor area ratio, unconditioned basement)

Hydrogen

Status

 Working with industry to develop technologies in quantities large enough, and at costs low enough, to compete with traditional energy sources.

Potential

Commercially viable hydrogen and fuel cell systems by 2015

NREL Research Thrusts

- Hydrogen production, delivery, storage and manufacturing
- Fuel cells
- Safety, codes, and standards
- H₂-to-Wind NREL/Xcel Project
 - Maximize wind energy by reducing uncertainty and variability
 - Hydrogen produced through electrolysis

National Renewable Energy Laboratory

Geothermal

Today's Status:

- 2,800 MWe installed, 500 MWe new contracts, 3000 MWe under development
- Cost 5-8¢/kWh with no PTC
- Capacity factor typically > 90%, base load power

DOE Cost Goals:

- <5¢/kWh, for typical hydrothermal sites
- 5¢/kWh, for enhanced geothermal systems with mature technology

Long Term Potential:

Recent MIT Analysis shows
 potential for 100,000 MW installed
 Enhanced Geothermal Power systems
 by 2050, cost-competitive with coal powered generation

NREL Research Thrusts:

- Analysis to define the technology path to commercialization of Enhanced Geothermal Systems
- Low temperature conversion cycles
- Better performing, lower cost components
- Innovative materials

Biopower

Biopower status

- 2006 Capacity 10.5 GWe
 - 5 GW Pulp and Paper
 - 2 GW Dedicated Biomass
 - 3 GW MSW and Landfill Gas
 - 0.5 GW Cofiring
- 2004 Generation 68.5 TWh
- Cost 0.08 0.10 USD/kWh

Potential

- Cost 0.04-0.06 USD kWh (integrated gasification combined cycle)
- 2030 160 TWh (net electricity exported to grid from integrated 60 billion gal/yr biorefinery industry)

Plug-In Hybrid Electric Vehicles (PHEV)

Status:

- PHEV-only conversion vehicles available
- OEMS building prototypes
- NREL PHEV Test Bed

NREL Research Thrusts

- Energy storage
- Advanced power electronics
- Vehicle ancillary loads reduction
- Vehicle thermal management
- Utility interconnection
- Vehicle-to-grid

Key Challenges

- Energy storage life and cost
- Utility impacts
- Vehicle cost
- Recharging locations
- Tailpipe emissions/cold starts
- Cabin heating/cooling
- ~33% put cars in garage

Must policy measures include a correspondingly aggressive investment in technology innovation and cost reduction?

Declining Energy R&D Investments...

Source: Daniel Kammen, Gregory Nemet Reversing the Incredible, Shrinking Energy R&D Budget
Table 10.3, Edition 25, Transportation Energy Data Book http://rael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf
Table 10.3, Edition 25, Transportation Energy Data Book http://rael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf
Table 10.3, Edition 25, Transportation Energy Data Book http://rael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf
Table 10.3, Edition 25, Transportation Energy Data Book http://rael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf
Table 10.3, Edition 25, Transportation Energy Data Book http://rael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf
Table 10.3, Edition 25, Transportation Energy Data Book http://rael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf
Table 10.3, Edition 25, Transportation Energy Laboratory

Declining Energy R&D Investments... Reflect World Oil Price Movement

Source: Daniel Kammen, Gregory Nemet Reversing the Incredible, Shrinking Energy R&D Budget http://rael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf
Table 10.3, Edition 25, Transportation Energy Data Book http://cta.ornl.gov/data/chapter10.shtml

Achieving the Right Balance: Technology Investment Pathways

Source: NREL 2007

REL National Renewable Energy Laboratory

The U.S. Department of Energy's National Renewable Energy Laboratory

